
SOLAR: SPARSE ORTHOGONAL LEARNED 
AND RANDOM EMBEDDINGS

This work proposes SOLAR, a high-dimensional and ultra-sparse 

embedding learning method, which is a significantly superior 

alternative to dense low-dimensional embedding for both query 

latency and accuracy in Search Engines.

Unique Design Choices: 

• To facilitate trivial distribution across GPUs, we design label 

embeddings to be super-sparse and orthogonal.

• We spread out the non-zeros of label vectors uniformly across the 

high dimensional space and fix the label vectors and only learn the 

query vectors.

Tharun Medini, Rice University

Beidi Chen, Stanford University

Anshumali Shrivastava, Rice University

Our Proposal: SOLAR
• Notations: N denotes the total number of labels. D is the sparse vector 

dimension. K is the number of non-zeros in label vectors. B=D/K is the 

number of buckets in each component of the vector.

• Preprocessing: 

• Partition D vector into K chunks

• Each chunk has B buckets with exactly one non-zero index

• The single non-zero index is picked randomly in the range of B

for each of the K components

• The dot-product between any two label vectors is ~0

• Training:

• Lookup all true label vectors for an input

• Perform an ‘OR’ operation over the respective sparse vectors

• Partition the combined label vector into K chunks

• Train K feed-forward networks to predict one each of the K

chunks

• Inference:

• Pass an input through all K models

• Sort the B scores in each model to get top-m buckets

• Query the m*K buckets in the inverted index and get the union of 

all candidate labels

• Noisy candidates: Due to random initialization of label vectors, 

irrelevant labels are pooled together. We will omit all labels below 

a certain frequency threshold t across K models.

• For each candidate, sum the predicted probability scores for the 

corresponding bucket and sort for the top results

SOLAR has 4-fold advantage: 

• Matrix Multiplication is replaced by cheap Inverted-Index Lookups

• Load-balanced Inverted Indexes

• Lower Embedding Memory

• Zero-communication distributed training of embeddings

Training

Schematic diagram for label vector construction (on the right) and the training process (on the left). 

Each label vector is B*K dimensional divided into K components of length B. Each vector is K-sparse 

with exactly one non-zero index in each component (colored on the right). The components are separated 

by dotted vertical lines. For a given input, we perform an 'OR' operation over the true label vectors and 

feed the resultant pieces to independent small classifiers.

Inverted-Index 

construction for the 

label vectors shown in 

the top figure. We 

construct one index for 

each of the K chunks. 

Each bucket will have 

the same number of 

labels by design (Load-

Balanced)

Inverted Index

Inference

Schematic diagram for Inference. We first get K probability vectors of B dimensions each. 

Then we only retain the top-m buckets after sparsification (m=1 in above figure. For our 

experiments, m varies among 50 and 100). We accumulate the candidate labels based on 

inverted-index for these top-buckets and aggregate their scores and identify the best labels

Product-to-Product Recommendation

Comparison of SOLAR against DSSM, DSSM+GLaS, and SNRM baselines. SOLAR’s metrics are better 

than the industry-standard DSSM model while training 10x faster and evaluating 2x faster (SOLAR-CPU 

vs DSSM-GPU evaluation). GLaS regularizer improves the metrics but still lags behind SOLAR.

Extreme Classification Datasets

SOLAR vs popular Extreme Classification benchmarks. Embedding models AnnexML and SLEEC clearly 

underperform compared to SOLAR. SOLAR even outperforms the state-of-the-art non-embedding baselines 

like Parabel and Slice. The gains in P@5 are particularly huge (45.32% vs 31.57%). SLEEC and SLICE do 

not scale up to 3M labels (corroborated on XML-Repo)

Training and Evaluation speeds against the fastest baselines

Contact
Tharun Medini: tharun.medini@rice.edu

Anshumali Shrivastava: anshumali@rice.edu

RUSH-LAB: rush.rice.edu

mailto:anshumali@rice.edu

