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This work proposes SOLAR, a high-dimensional and ultra-sparse Irainin w
embedding learning method, which is a significantly superior Preprocessed Label Vectors P@1 P@10 | Rec@® | Train Eval time
alternative to dense Io_vv-dlmensmna_l embedding for both query Cross-Entropy BX R 100 | time (hrs) | (ms/point)
latency and accuracy in Search Engines. . ‘ SOLAR 3524 29.71 26.98 34.19 2.65 0.96
_ _ _ | - (m=100)
Unique Design Choices:
- .. C . : — DSSM 5 31.34 2755 2441 32.71 25.27 1.77
 To facilitate trivial distribution across GPUs, we design label O “ (d=1600)
. - 2
embeddings to be super-sparse and orthogonal._ . B Glas 5 3751 2831 2541 3317  37.14 1.77
* We spread out the non-zeros of label vectors uniformly across the — = (d=1600)
high dimensional space and fix the label vectors and only learn the B = SNRM 5 159 201 193 241 i i
guery vectors. Input ) (d=30K)
E E E AnnexML 10  26.31 22.22 19.37 26.13 16 3.06
SOLAR has 4-fold advantage: (d=800)

Schematic diagram for label vector construction (on the right) and the training process (on the left).
« Matrix Multiplication is replaced by cheap Inverted-Index Lookups Each label vector is B*K dimensional divided into K components of length B. Each vector is K-sparse
o Load-balanced Inverted Indexes with exactly one non-zero index in each component (colored on the right). The components are separated

Oa by dotted vertical lines. For a given input, we perform an 'OR' operation over the true label vectors and
« Lower Embedding Memory feed the resultant pieces to independent small classifiers.

Comparison of SOLAR against DSSM, DSSM+GLaS, and SNRM baselines. SOLAR’s metrics are better
than the industry-standard DSSM model while training 10x faster and evaluating 2x faster (SOLAR-CPU
vs DSSM-GPU evaluation). GLaS regularizer improves the metrics but still lags behind SOLAR.
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Notations: N denotes the total number of labels. D is the sparse vector . o | l@e® construction for the e I >9.34 >389
dimension. K is the number of non-zeros in label vectors. B=D/K is the 2 gg 2 gg Iatt)ﬁl \t/ect?_rs shov\x/n in Wiki-500K Egi :E-z: iiz jjz igz iij igi 33;: zijz
number of buckets in each component of the vector. : s ¢ top Tigure. YWe ' ' ' ' ; : ' '
_ P | construct one index for P@1 3437 3419 2636  18.77 24.47 33.93 28.51 37.77
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« Each chunk has B buckets with exactly one non-zero index : gg : gg labels by design (Load- P@1 = 44.83 4461 4179 - y 47.51 43.83
» The single non-zero index is picked randomly in the range of B 2 @@ | : 00 Balanced) e I B B : 44.68 4181
for each of the K components : OO : QOO P@5  41.03  40.69  35.98 - . 42.58 40.09
* The dot-product between any two label vectors is ~0 Inf SOLAR vs popular Extreme Classification benchmarks. Embedding models AnnexML and SLEEC clearly
Training: w underperform compared to SOLAR. SOLAR even outperforms the state-of-the-art non-embedding baselines
' _ - like Parabel and Slice. The gains in P@5 are particularly huge (45.32% vs 31.57%). SLEEC and SLICE do
* Lookup all true label vectors for an input Sparsification not scale up to 3M labels (corroborated on XML-Repo)
« Perform an ‘OR’ operation over the respective sparse vectors gjj o F Best Label
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« Train K feed-forward networks to predict one each of the K 0:5370.5070.61 =244
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« Pass an input through all K models . «({"@ Amz-670K  Training time (hrs) 1.19 1.19 1.92 1.84 2.85
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« Noisy candidates: Due to random initialization of label vectors, Classifienica> A Training and Evaluation speeds against the fastest baselines
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