SOLAR: SPARSE ORTHOGONAL LEARNED AND RANDOM EMBEDDINGS

This work proposes SOLAR, a high-dimensional and ultra-sparse embedding learning method, which is a significantly superior alternative to dense low-dimensional embedding for both query latency and accuracy in Search Engines.

Unique Design Choices:

- To facilitate trivial distribution across GPUs, we design label embeddings to be **super-sparse** and **orthogonal**.
- We **spread out** the non-zeros of label vectors uniformly across the high dimensional space and **fix** the label vectors and **only learn** the query vectors.

SOLAR has 4-fold advantage:

- Matrix Multiplication is replaced by cheap Inverted-Index Lookups
- Load-balanced Inverted Indexes
- Lower Embedding Memory
- Zero-communication distributed training of embeddings

Our Proposal: SOLAR

• <u>Notations:</u> N denotes the total number of labels. **D** is the sparse vector dimension. **K** is the number of non-zeros in label vectors. **B=D/K** is the number of buckets in each component of the vector.

• Preprocessing:

- Partition **D** vector into **K** chunks
- Each chunk has **B** buckets with exactly one non-zero index
- The single non-zero index is **picked randomly** in the range of **B** for each of the **K** components
- The dot-product between any two label vectors is ~0

• Training:

- Lookup all true label vectors for an input
- Perform an 'OR' operation over the respective sparse vectors
- Partition the combined label vector into **K** chunks
- Train **K** feed-forward networks to predict one each of the **K** chunks

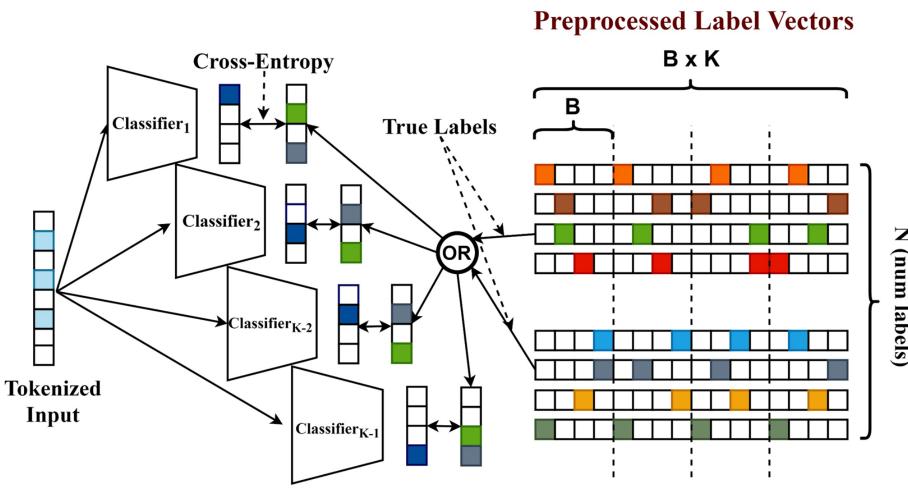
• Inference:

- Pass an input through all **K** models
- Sort the **B** scores in each model to get **top-m** buckets
- Query the **m*****K** buckets in the inverted index and get the union of all candidate labels
- <u>Noisy candidates:</u> Due to random initialization of label vectors, irrelevant labels are pooled together. We will omit all labels below a certain frequency threshold **t** across **K** models.
- For each candidate, sum the predicted probability scores for the corresponding bucket and sort for the top results

Schematic diagram for **label vector construction** (on the right) and the **training process** (on the left). Each label vector is **B***K dimensional divided into K components of length **B**. Each vector is K-sparse with exactly one non-zero index in each component (colored on the right). The components are separated by dotted vertical lines. For a given input, we perform an '**OR**' operation over the true label vectors and feed the resultant pieces to independent small classifiers.

Tharun Medini, Rice University Beidi Chen, Stanford University Anshumali Shrivastava, Rice University

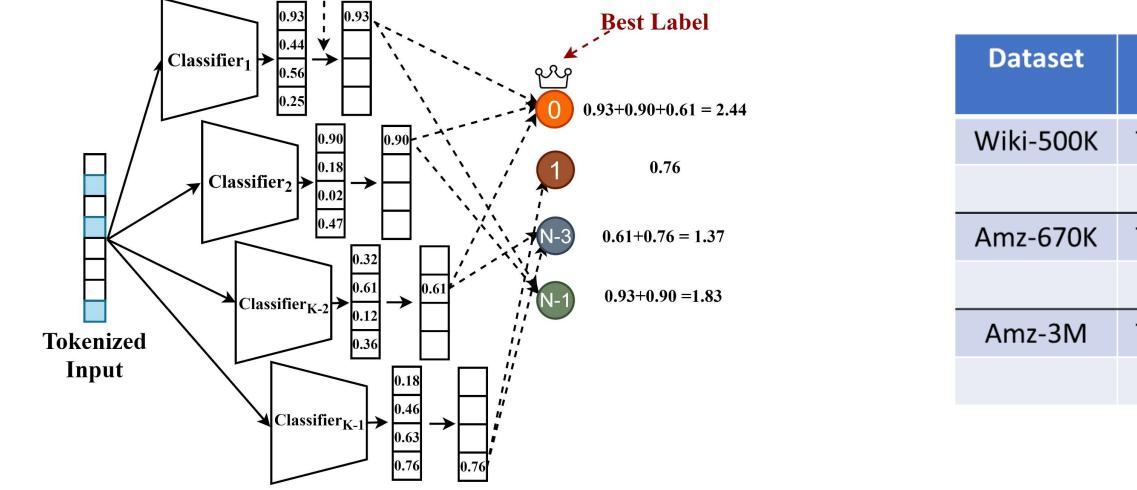
Training



Comparison of SOLAR against DSSM, DSSM+GLaS, and SNRM baselines. SOLAR's metrics are better than the industry-standard DSSM model while training **10x faster** and evaluating **2x faster** (SOLAR-CPU vs DSSM-GPU evaluation). GLaS regularizer improves the metrics but still lags behind SOLAR.

Dataset	Metric	SOLAR (m=100)	SOLAR (m=50)	Annex ML	SLEEC	FyC	Parabel	PfastreXML	SLICE
	P@1	60.92	60.52	56.81	30.86	46.86	59.34	55	59.89
Wiki-500K	P@3	46.94	45.56	36.78	20.77	31.29	39.05	36.14	39.89
	P@5	45.32	45.28	27.45	15.23	25.17	29.35	27.38	30.12
	P@1	34.37	34.19	26.36	18.77	24.47	33.93	28.51	37.77
Amz-670K	P@3	32.71	32.51	22.94	16.5	20.44	30.38	26.06	33.76
	P@5	32.55	32.46	20.59	14.97	17.13	27.49	24.17	30.7
	P@1	44.89	44.61	41.79	-	-	47.51	43.83	-
Amz-3M	P@3	42.36	42.08	38.24	-	-	44.68	41.81	-
	P@5	41.03	40.69	35.98	-	-	42.58	40.09	-

SOLAR vs popular Extreme Classification benchmarks. Embedding models AnnexML and SLEEC clearly underperform compared to SOLAR. SOLAR even outperforms the state-of-the-art non-embedding baselines like Parabel and Slice. **The gains in P@5 are particularly huge (45.32% vs 31.57%)**. SLEEC and SLICE do not scale up to 3M labels (corroborated on XML-Repo)



Schematic diagram for Inference. We first get **K** probability vectors of **B** dimensions each. Then we only retain the **top-m** buckets after sparsification (**m**=1 in above figure. For our experiments, **m** varies among 50 and 100). We accumulate the candidate labels based on inverted-index for these top-buckets and aggregate their scores and identify the best labels

Inverted Index

Bucket Labels

Inverted Index_{K-}

Bucket Labels

2

3

0 3 N-1

0 N-4

2 N-2

Sparsification

0

0 N-1

nverted Index

Bucket Labels

0

3

2

0 N-1

1 2

N-4 N-3

2 3 N-2

Inverted Index_{K-2}

0 **1** N-1

3 2 3

0 N-3

N-4 N-2

Bucket Labels

Inverted-Index construction for the label vectors shown in the top figure. We construct one index for each of the **K** chunks. Each bucket will have the same number of labels by design (Load-Balanced)

Product-to-Product Recommendation

Model	epochs	P@1	P@5	P@10	Rec@ 100	Train time (hrs)	Eval time (ms/point)
50LAR n=100)	10	35.24	29.71	26.98	34.19	2.65	0.96
DSSM =1600)	5	31.34	27.55	24.41	32.71	25.27	1.77
GLaS =1600)	5	32.51	28.31	25.41	33.17	37.14	1.77
SNRM d=30K)	5	1.59	2.01	1.93	2.41	-	-
nexML d=800)	10	26.31	22.22	19.37	26.13	16	3.06

Extreme Classification Datasets

	SOLAR (m=100)	SOLAR (m=50)	SLICE	Parabel	PfastreXML
Training time (hrs)	2.52	2.52	2.34	6.29	11.14
Eval (ms/point)	1.1	0.76	1.37	2.94	6.36
Training time (hrs)	1.19	1.19	1.92	1.84	2.85
Eval (ms/point)	2.56	1.58	3.49	2.85	19.35
Training time (hrs)	5.73	5.73	-	5.39	15.74
Eval (ms/point)	2.09	1.87	-	1.72	4.05

Training and Evaluation speeds against the fastest baselines

Contact

Tharun Medini: tharun.medini@rice.edu Anshumali Shrivastava: <u>anshumali@rice.edu</u> RUSH-LAB: rush.rice.edu